Практический опыт построения эффективных антенн на диапазон 80 метров
Часть I. Антенна RZ6AU.
1. Краткая предыстория. Весной 2005 года коллективная радиостанция RK6AXS лишилась своего помещения – история по нынешним временам обычная. Поиски места для новой позиции продолжались несколько месяцев – место мы нашли. Причём, такое, которое позволяет не слишком сдерживать воображение в планировании строительства антенн. После того, как был установлен необходимый минимум, позволяющий вести относительно полноценную работу в эфире (TH7DX от HyGain на ВЧ, Inv V и дельта 40м на НЧ), встал вопрос о строительстве того, ради чего мы, собственно, и искали место: серьёзного контестового антенного хозяйства. Поскольку зима была на носу, начать решили с диапазонов 80 и 160 м.
2. Буридановы муки. Многие радиолюбители нас поймут: когда после городской тесноты получаешь десяток гектар под антенное поле, хочется реализовать всё, о чём в городе только мечталось. Всерьёз для диапазона 80 мы рассматривали 6 вариантов:
- система вертикальных фазированных штырей с переключаемой диаграммой направленности.
- 2 el rotary YAGI
- 3 el rotary YAGI
- 2 или 3 el wire YAGI (две антенные системы, переключаемые в основных направлениях – для UA6A это W(EU)-VK и JA-SA)
- 2 el Delta Loop по образу и подобию того, что пока ещё не упало на лунную антенну RN6BN.
- Антенна, разработанная столичным ренегатом (и нашим старым другом) Валерием Шиневским, RZ6AU. Оригинальное описание этой антенны можно посмотреть здесь или KB и УКВ 9/2000.
Для диапазона 160 м список был вдвое короче:
- система штырей с переключаемой ДН.
- 2 el Delta Loop
- Антенна RZ6AU.
Сразу хотим внести ясность: за годы существования RK6AXS накоплен достаточный опыт строительства и согласования серьёзных антенных систем. Ресурсы, необходимые для подъёма любой из вышеперечисленных антенн, у RK6AXS также имеются. YAGI на восьмидесятку мы пока не поднимали, но сходные задачи решать приходилось.
Не будем описывать долгие ломания копий, аргументы и контраргументы. От идеи быстрого (до начала зимы) подъёма YAGI пришлось отказаться сразу же. Сложная и тяжёлая конструкция требует многих месяцев труда и серьёзных вложений в строительство. А хотелось начать работать уже зимой, в пик прохождения. Два элемента Дельта Луп в практической эксплуатации проявили себя исключительно хорошо, но, однако, не лучше системы из 4-х фазированных штырей (при аналогичных, если не бОльших затратах труда и денег). Антенна RZ6AU манила нас, как сыр лисицу. Простая, лёгкая, очень дешёвая и с выдающимися заявленными характеристиками. Подумать только: 5.5 дБ усиления! 30 дБ подавления заднего лепестка! НА 160 МЕТРОВ!!!
После долгих консультаций с самим RZ6AU было решено начинать именно с неё. Сразу на 160-метровый диапазон. Валера настойчиво нам её рекомендовал. Дополнительно он дал несколько советов:
- диэлектрическая мачта заметно улучшит характеристики антенны. Как минимум, хорошее подавление заднего лепестка будет осуществляться в более широкой полосе.
- в качестве согласующего устройства лучше всего применить резонансный автотрансформатор.
- особое внимание уделить качеству заземления.
Рекомендации мы приняли с благодарностью, и началось…
3. Как это выглядит. Для тех, кому лень идти по приведённой выше ссылке, кратко обрисуем, что собой представляет антенна RZ6AU. Цитирую автора:
Антенна представляет собой систему из двух одинаковых вертикальных полуволновых петлевых вибраторов с активным шунтовым питанием. Для уменьшения высоты и упрощения конструкции верхние углы вибраторов на изоляторах сведены к вершине мачты высотой 25,00 м (в участке 3,75...3,8 МГц высота мачты 13 м, далее в скобках будут указываться размеры для DX-окна 80-метрового диапазона) и отстоят от нее на 0,20 (0,20) м.
Рис.1.Наличие неизолированной металлической мачты указанной длины внутри рамок на параметры антенн не влияет.
Четыре верхних части вибраторов длиной по 25,88 (13,04) м расходятся от мачты под прямыми углами, опускаясь к земле до высоты 6,00 (3,00) м.
В этих местах полотно вибратора пропускается сквозь изолятор и, изгибаясь, уходит к точке питания, отстоящей на 10,00 (4,72) м от основания мачты.
Рис.2.К изоляторам прикреплены четыре растяжки, служащие как бы продолжениями верхних частей вибраторов, вместе с которыми они крепят вершину мачты (подобно элементам двухдиапазонного Inverted Vee).
Длина части вибратора от изолятора до точки питания составляет 14,07 (6,08) м (рис.5 и 6).
Рамки выполнены из канатика или биметалла диаметром 3...4 мм.
Два отрезка 75-омного кабеля длиной по 10,00 (4,72) м подключаются к противоположным рамкам и сходятся к основанию мачты.
Один конец рамки подключается к системе заземления, второй к центральному проводнику.
Возле мачты оплетки кабелей также заземляются, а между центральными проводниками включается фазосдвигающий конденсатор. Изменение направления излучения производится подключением выхода согласующего устройства к соответствующему концу конденсатора (посредством управляемого из Shack'a реле). Кабель питания от трансивера подключается ко входу согласующего устройства. Схема СУ может быть любой. Конец цитаты.
Ниже приведённые автором диаграммы направленности антенны в вертикальной и горизонтальной плоскостях – рис.3 и 4 соответственно.
Рис.3.
Рис. 4.Заявленные характеристики антенны:
- подавление заднего лепестка: на частоте 1830 кГц -22 дБ, на 1845 кГц -31 дБ, на 1860 кГц -19 дБ;
- усиление антенны соответственно 5,3...5,5...5,7 дБ.
4. Стройка. Сами виноваты. Серьёзное строительство начали со 160 м.
Модель на 7 мгц, выполненную на телескопической удочке с десятком противовесов, ставили в спешке, сравнение с таким же телескопическим штырём на диапазон 40 метров носило несколько поверхностный характер. Антенна работала, принимала, вроде, не хуже штыря, демонстрировала наличие хорошей диаграммы направленности. Моделирование происходило в чистом поле, испортившаяся погода не позволила сравнить антенны скурпулёзно. Единственное QSO с VK, проведённое телефоном мощностью 100 Ватт, убедило нас в том, что антенна работает.
В R-Quad (спасибо UA6BGB) были закуплены стеклотекстолитовые трубы. Поскольку авторитет RZ6AU и его репутация разработчика реально работающих антенн очень высоки, трубы были закуплены в количестве, достаточном для изготовления 4-х диэлектрических мачт на 80 м и двух на 160 м. К заземлению подошли максимально ответственно: в точках заземления в грунт были забиты квадратом 4 арматуры длиной 2 м и обварены по периметру такими же двухметровыми отрезками арматуры. По диагонали с соблюдением надёжного электрического контакта были прикручены два отрезка биметалла Ф4 мм – к ним потом припаивались противовесы.
Дальше начались наши ошибки.
Собранная диэлектрическая мачта высотой 24 метра, оказалась слишком гибкой. Поднять её не удалось даже методом «падающей стрелы» с семью ярусами растяжек. Дело в том, что наибольший из доступных диаметров стеклотекстолитовых труб составляет всего 45 мм – он, соответственно, и был у нас стартовым. Финишный – 18 мм. Мачта падала раз за разом, едва преодолев угол 45 градусов. По нашим оценкам, стартовый диаметр стеклотекстолитовой трубы для обеспечения необходимой упругости при такой длине мачты должен составлять 80-90 мм – купить такие негде. Финишный – не менее 30. Затею с подъёмом антенны на диапазон 160 м пришлось отложить.
Зато восьмидесяточную мачту высотой 14 метров из тех же труб мы подняли одной рукой минуты за три. О конструкции мачты: концы труб вставлялись один в другой (диаметры подобрали соответствующие) на длину 30 см и фиксировались саморезами. Ещё полчаса потратили на выравнивание растяжек и придание полотнам антенны нужной геометрии. В качестве оттяжек применялась обычная капроновая верёвка. Тут всплыло первое несоответствие реальной конструкции авторскому описанию. Показанное красным цветом на рис. 5 расстояние никак не может быть равным ТРЕМ метрам. После подъёма антенны от обеих точек заземления рамок было проложено по 100 медных противовесов длиной (опять-таки, рекомендации автора) 10 метров. Точки заземления были подготовлены так же, как и для антенны на 160 м – арматура, электросварка, биметалл, пропайка.
рис. 5.5. Настройка. Второе несоответствие – гораздо более серьёзное – всплыло на стадии согласования антенны. Точнее, ещё на стадии моделирования её на 7 Мгц. Если заземлить отрезки кабеля в точках, выделенных на рис. 6 красным цветом, как того требует авторское описание, никакой диаграммы направленности у антенны не будет. Почему – пусть разбираются теоретики, если кому-то из них вдруг станет любопытно. Данная статья написана исключительно на практическом материале.
рис. 6.Это несоответствие стоило нам нескольких драгоценных часов на стадии моделирования – именно с ним мы проваландались настолько долго, что не успели потом как следует сравнить антенну с классическим штырём. Найти причину отсутствия диаграммы направленности нам помог сам автор – по телефону он порекомендовал отключить заземление отрезков кабеля в этих точках – и антенна сразу заработала.
Впрочем, «сразу» это преувеличение. Антенна весьма и весьма непроста в настройке и согласовании. За долгие часы, проведённые на морозе (большую часть – ещё и в темноте, с антенной возились после работы) мы выработали такую методу:
- 1. В качестве С1 берём обычный КПЕ от вещательных приёмников, либо другой, подходящей ёмкости.
- 2. Подключаем трансивер непосредственно к контактам реле К1.
- 3. Встроенный тюнер трансивера ОТКЛЮЧАЕМ.
- 4. Определяем резонансную частоту антенны. КСВ будет заметно >1 (у нас – чуть меньше 2). При необходимости – удлиняем или укорачиваем рамки.
- 5. Не обращая внимания на КСВ, отстраиваем антенну по максимуму подавления заднего лепестка.
- 6. Подключаем согласующее устройство. Настройки антенны изменятся.
- 7. Если настройки антенны изменились существенно – применяем другой способ согласования.
- 8. Подстраиваем антенну по КСВ. Настройки снова изменятся.
- 9. Подстраиваем антенну по максимуму подавления. КСВ увеличится.
- 10. Повторяем пункты 7 и 8 до получения максимального подавления при минимальном КСВ.
- 11. Измеряем емкость С1 и меняем его на постоянный с соответствующим номиналом ёмкости и КВАР. В случае использования емкостей в СУ – измеряем и их и также заменяем на постоянные.
Мы применяли рекомендованный автором антенны резонансный автотрансформатор. Его влияние на сдвиг фазы (читай – подавление заднего лепестка) оказалось весьма заметным. Для скептиков: контур был выполнен из медной трубки диаметром 7мм, реле использовались ОЧЕНЬ мощные и высокочастотные (расстояние между разомкнутыми контактами – 20 мм, материал изолятора – керамика), соединительные проводники имели минимальную длину, взаимное расположение элементов исключало взаимодействия паразитного толка.
Капризничала антенна не переставая. Уровень КСВ и подавления менялся в зависимости от количества людей, участвовавших в согласовании, от высоты стола с аппаратурой, от силы ветра, так или иначе менявшего геометрию рамок, от наличия в радиусе 30 метров каких-либо крупных металлических предметов и т.д. Из за этого, например, пришлось отказаться от идеи подсветить операционное поле фарами подогнанной машины: рамка, к которой автомобиль подъехал на 20 метров, сразу и сильно уплыла вниз по частоте. Но, как бы то ни было, антенну мы настроили.
6. Ходовые испытания. К моменту завершения настройки антенны RZ6AU на позиции RK6AXS имелась только одна антенна на диапазон 80 метров – Inv V с высотой подвеса 19 м.
Первый этап испытаний заключался в сравнении с этим самым «инвертедом».
Что и говорить, у «инвертеда» она выигрывает заметно. Это слышно сразу, причём на всех трассах. Первое что «бросается в уши» она гораздо меньше шумит. То есть, при аналогичном уровне полезного сигнала, уровень шумов у Inv V выше на три балла. На ближних трассах она не проигрывает «инвертеду» по уровню, на дальних – заметно у него выигрывает. Всё это, разумеется, в направлении лепестка ДН. В других направлениях, она, как и положено, проигрывала соответствующее количество баллов.
Но.
Тем, кто долго работал на «верёвки» а потом поставил себе штырь, должно быть знакомо это чувство: на верёвку ты не слышишь ничего, а переключаешься на штырь – бах! – и из под уровня шумов отчётливо слышен сигнал какого-нибудь VK9. Снова переключаешься на верёвку – нет на частоте даже признаков никакого VK9. А на штырь – вот он, принимай на здоровье.
Так вот. Ничего подобного в сравнении с Inv V антенна RZ6AU не продемонстрировала. Выигрыш – да, диаграмма – да, но то, что было слышно на неё – было слышно и на «инвертед». Хуже. Иной раз на два-три балла хуже. Но слышно. Позже, на очень длинных трассах мы смогли отметить немногочисленные случаи, когда на RZ6AU что-то принять было можно, а на «инвертед» нет, но того волшебного эффекта, которого мы ожидали, исходя из своего опыта эксплуатации вертикальных антенн – не было и в помине. Вот тут мнения в коллективе разделились. UA6CW (начальник) утверждал, что такого эффекта быть и не должно, есть выигрыш – и ладно, UA6CT (скептик) настаивал на необходимости дополнительных затрат и подъёма полноразмерного четвертьволнового штыря – «чисто для сравнения». RA6ATN сохранял нейтральную позицию.
Второй этап испытаний антенны случился в перерыве телеграфного Кубка РФ. UA6CW, будучи на RZ6AZZ (там – штырь высотой 24 метра и вертикальный биквадрат на стометровой высоте) повесил CQ USA, UA6CT, находясь на RK6AXS в 22 километрах южнее, включался в каждое QSO, имитируя «антенну номер два», с просьбой дать реальный рапорт «каждой антенне». Мощность при этом была одинаковой на обеих позициях. Ох, какой обнадёживающий получился результат…
По оценкам корреспондентов из NA антенна RZ6AU не проигрывала биквадрату и во многих случаях – до 60% выигрывала у штыря от 5 до 10 дБ. Европа принимала сигналы всех трёх антенн с примерно одинаковым уровнем. После этого этапа испытаний споры скептиков и начальников обострились – установка штыря (согласитесь, немаленькой и не такой уж простенькой антенны) «только ради сравнения» уже не казалась такой уж хорошей идеей. И это очень хорошо, что скепсис иногда побеждает.
Третий этап. Поднаторевши на подъёме гибких мачт, штырь высотой 22,5 метра (дюралевые трубы, конец – отрезок биметалла, изолятор – стеклотекстолит, три яруса капроновых растяжек) мы поставили менее чем за час. И потом ещё восемь часов прокладывали противовесы, общим количеством 100 штук, длиной по 20 метров, с точкой заземления, подготовленной аналогично вышеупомянутым.
А теперь представьте наши эмоции, когда штырь, изготовленный из чего попало, поднятый кое-как и вообще никак не согласованный (КСВ на 3520 получился около 1,5 – нас это устроило) буквально надрал результат наших долгих и тяжких трудов на всех трассах и во всех направлениях. Штырь, конечно, не имеет направленности в горизонтальной плоскости, штырь, конечно, гораздо сильнее шумит (на три-четыре балла), да и вообще, само название «штырь» звучит уже несколько банально…
Но.
Штырь выигрывает от 0 (на ближних трассах) до 10 (на дальних) дБ в ста процентах случаев. А в некоторых – и нередких – случаях этот выигрыш является дискретной величиной «слышу/не слышу». Максимально зафиксированный выигрыш штыря составил 20 дБ, в двух или трёх случаях на совсем уж близких корреспондентах антенна RZ6AU выиграла у него пару-тройку дБ. Вот и всё.
Стоит лишь отметить, что пики QSB штыря не совпадают с пиками QSB антенны RZ6AU. Выдержка из аппаратного журнала RK6AXS приведена ниже.
Позывной Принятый рапорт (антенна RZ6AU) Принятый рапорт (штырь)
- K4JJW 579 579
- N4GI 569 589
- NB3O 579 599
- K8AJS 589 599
- OK2SFO 599+10 599+40
Автор антенны, которого мы ознакомили с результатами своих экспериментов, отреагировал лаконично. «Быть этого не может!» сказал наш старый друг Валерий Шиневский. И занялся исследованием возможных причин возникновения такой существенной разницы между характеристиками антенн. Предположение о том, что мы что-то сделали неправильно, отпало после детальной перепроверки последовательности наших действий и конструкции антенны. Предположение о влияния кабеля (от шека до антенны RZ6AU было почти вдвое дальше, чем до штыря) отпало после того, как мы подключили к антеннам кабели одинаковой длины. Предположение о взаимном влиянии антенн не нашло своего подтверждения в силу довольно значительного – 120 метров – удаления их друг от друга и взаимного расположения – штырь не попадает в ДН антенны RZ6AU. Осталось последнее предположение: «Противовесы у штыря двадцать метров, а у рамок – всего по десять. Удлиняйте противовесы!» Мы проложили дополнительно к имевшимся ещё 40 противовесов длиной 20 метров. Ничего не изменилось. Антенна RZ6AU работала точно так же (по уровням, по рапортам корреспондентов, по сравнению с Inv V и по нашим субъективным ощущениям) как и до установки штыря, штырь всё так же у неё выигрывал. Мы детально перебрали всю систему фазового сдвига и согласования. Мы пробовали менять длину рамок и их геометрию. Мы провели ещё одну ночь на снегу под антенной. Лучше она работать не стала. Результаты сравнений зафиксированы в аппаратном журнале, эксперимент признан завершённым.
7. Выводы.
Вывод радиотехнический. Антенна конструкции RZ6AU несомненно является работающей антенной системой, обладающей хорошей ДН и некоторым усилением относительно низко висящего диполя. Однако, КПД антенны оказался ниже, чем у четвертьволнового вертикального вибратора. Форма ДН, приведённой автором, полностью соответствует нашим эфирным впечатлениям, однако, заявленного усиления на практике достичь не удалось. Антенна чрезвычайно чувствительна к внешним влияниям. Наличие поблизости металла, как то: мачты приёмных ТВ-антенн, громоотводы, провода и т.п., могут существенно осложнить процесс её настройки и полностью нейтрализовать главное достоинство этой антенны – её диаграмму направленности.
Вывод спортивный. ДЕСЯТЬ дБ – это много. Для того чтобы достичь десятидецибельного преимущества в тесте, команды радиоспортсменов городят целые антенные поля, строят усилители, для питания которых требуются отдельные подстанции, забираются на горы и совершают прочие необъяснимые логически поступки. Если даже брать среднюю разницу со штырём на трассе UA6A – USA в 5 дБ – это всё равно много. Почти в четыре раза по мощности. В понимании RK6AXS такая антенна для работы в соревнованиях непригодна.
Вывод практический. Антенну RZ6AU можно смело рекомендовать радиолюбителям, проживающим в сельской местности и имеющим в качестве антенн «верёвки» она однозначно лучше низкого инвертед Ви. Наличие направленности и возможность переключения («отвернуться», например, от наших западных соседей при работе на 80 и 160 м иногда бывает жизненно необходимо) делают эту антенну весьма привлекательной и при этом относительно недорогой конструкцией. Кроме того, антенну в её варианте на 40 или 30 метров можно рекомендовать радиолюбителям, живущим в многоэтажках: места занимает немного, высоких мачт не требует, а шумит на порядок меньше штыря. UA6CT намерен дождаться исследований В. Шиневского по поводу возможности размещения на одной мачте антенн двух диапазонов и, в случае положительного результата, поставить аналогичную антенну на 40 и 30 м на крыше своего дома: в центре Краснодара уровень индустриальных помех велик настолько, что любой штырь превращается в генератор шума, подключённый ко входу трансивера.
Вывод перспективный. В 2006-м году RK6AXS для работы на НЧ-диапазонах будет использовать системы фазированных вертикальных четвертьволновых вибраторов. Эксперименты подтвердили высокое электрическое качество земли на позиции, кроме того, в их ходе был получен ценный опыт фазирования антенн. После подъёма YAGI на 40м будет проведён эксперимент по сравнению волнового канала и системы вертикальных вибраторов для диапазона 40 метров, на основании которого будет принято решение о целесообразности строительства YAGI на диапазон 80 метров.
Вывод маркетинговый. RZ6AU использовал для расчёта своей антенны популярную программу MMANA. Собственно, немалая часть аргументации Валерия сводилась к однозначному «MMANA не врёт!», а проигрыш штырю в конце концов был объяснён «несовершенством удалённого конструирования». Имея в своём коллективе специалистов по формированию масс, RK6AXS с сожалением констатирует возникновение среди радиолюбителей очередного религиозного феномена. Компьютерному моделировщику сейчас модно доверять больше, нежели практическим результатам. Видимо, не за горами времена, когда все проявления HAM-ства, включая строительство антенн, участие в соревнованиях, экспедиции, будут происходить лишь внутри компьютерных симуляторов. По твёрдому нашему убеждению, любая компьютерная программа есть не истина в последней инстанции, а всего лишь инструмент. И как инструмент, она не может быть совершенной. Известны случаи, когда, например, антенна YAGI, посчитанная в YAGI-оптимайзере работала расчётно, без настройки – и сразу! а аналогичная антенна, посчитанная в MMANA, на практике не обеспечивала расчётных характеристик. Известны случаи, когда реально работающая антенна, смоделированная в том же YAGI-оптимайзере, будучи перенесённой в MMANA, показывала совершенно иные характеристики, близко не корреллирующие с её измеренными на практике показателями. Известны и обратные случаи. За некоторые результаты разного подхода к программированию нам приходилось платить из собственного кармана. Наш уровень лояльности к YAGI-оптимайзеру бесконечно выше, но мы никому не навязываем своего взгляда на вещи и своей привычки к удобным нам инструментам. Проведённый эксперимент лишний раз подтвердил известное всем высказывание: «Практика – критерий истины».
8. Дополнение.
29.01.06, уже после написания этой статьи, мы подняли и согласовали в дополнение к нашему штырю ещё один – на расстоянии четверти волны. Выписку из аппаратного журнала приводить не буду, однако результат сравнения двух штырей с рамочной антенной был вполне предсказуем: минимум 6, в среднем 10 дБ выигрывала система двух фазированных штырей. Очень хорошая, кстати, система. Рекомендуем. J В скором будущем будут опубликованы результаты наших экспериментов со штырями.
Фотографии всех антенн можем выслать по запросу – пишите: rk6axs@mail.ru.
9. И последнее. Эксперимент обошёлся RK6AXS в цену неплохого трансивера – чуть больше тысячи долларов по курсу на декабрь 2005 г. (трубы, кабель, полотна, металл, инструменты, КПЕ, КВАРы и т.д.). Желающие могут его повторить J. Мы – отдаём своё предпочтение проверенным на практике конструкциям.
- RK6AXS crew:
- UA6CW
- RA6ATN
- UA6CT
Январь 2006