Простой и быстрый способ расчета источников питания


О.J. Cogburn.
Техасский сельскохозяйственно-механический университет
(Коллидж-Стейшн, шт. Техас)

Предлагаемый здесь прямой способ расчета позволяет быстро и легко определять параметры простого источника питания постоянного тока и затем проверять готовую схему посредством только одного осциллографа. Поскольку расчетные формулы основаны на использовании величин, измеряемых по осциллограмме выходного напряжения схемы во время ее испытания, нет необходимости выполнять промежуточные вычисления. Проверка еще больше ускоряется, поскольку уровень пульсаций в процентах определяется непосредственно по максимальному уровню выходного напряжения постоянного тока и по величине двойного амплитудного значения пульсаций выходного напряжения источника питания.

ip-rs1.gif
Рис.1

На рис. 1 показана схема простого источника питания и приведена временная диаграмма ее выходного напряжения, которое в данном случае равно также напряжению на конденсаторе. Уровень пульсаций в процентах и коэффициент пульсаций fт можно определить по осциллограмме выходного напряжения следующим образом:

ip-rs2.gif

Кроме того, поскольку изменение выходного напряжения в интервале времени между моментами tA и tB зависит от постоянной времени, определяемой сопротивлением нагрузочного резистора Rz и емкостью конденсатора С, значение выходного напряжения в момент времени tB можно записать так:

ip-rs3.gif

Если разделить это равенство на Eо(пик.), то получим

ip-rs4.gif

или

ip-rs5.gif

что можно переписать далее в виде

ip-rs6.gif

Если обратить это равенство и найти натуральный логарифм от обеих частей последнего, то получим

ip-rs7.gif

Емкость конденсатора С может быть теперь вычислена по формуле

ip-rs8.gif

Можно также вычислить емкость конденсатора С по известным (или желаемым) значениям таких величин, как выходное напряжение Ео, ток нагрузки Iz и уровень пульсаций fт. По интервалу времени между точками A и С можно определить частоту пульсаций F:

ip-rs9.gif

Поскольку передний фронт напряжения пульсаций совпадает с обозначенной пунктирной линией синусоидой, угол O будет равен

ip-rs10.gif

Интервал времени между точками D и В равен

ip-rs11.gif

Уравнения 2 и 3 позволяют вычислять емкость конденсатора С по заданным значениям входящих в них величин

ip-rs12.gif

При однополупериодном выпрямителе емкость конденсатора С выражается следующей формулой

ip-rs13.gif

Приведенные формулы позволяют определять емкость дополнительных конденсаторов, например конденсаторов П-образных фильтров, используя только емкостные реактивные сопротивления, последовательные активные сопротивления и расчетные формулы такого же типа, как для делителя напряжения.

Типичная схема источника питания с параллельной стабилизацией выходного напряжения показана на рис. 2; в ней для стабилизации выходного напряжения используется стабилитрон.

ip-rs14.gif ip-rs15.gif
РИС. 2.

На графике показана осциллограмма напряжения на конденсаторе (Ес). Охранное напряжение, определяемое последовательным резистором Rs и стабилитроном, предотвращает падение напряжения на конденсаторе ниже уровня выходного напряжения схемы. Значение охранного напряжения можно принимать равным примерно Vz/0,8, где Vz-напряжение стабилизации стабилитрона. Максимальное значение напряжения на конденсаторе можно тогда записать равным

ip-rs16.gif

Выходное напряжение пульсаций будет равно

ip-rs17.gif

где rz - внутреннее сопротивление стабилитрона для переменного тока. Сопротивление последовательного резистора Rs может быть вычислено по формуле

ip-rs18.gif

где Iz(мин.)-минимальное значение тока через стабилитрон, при котором рабочая точка источника питания лежит выше точки перегиба характеристики стабилитрона; это значение тока можно принимать равным 0,2 Iz (ном.), где Iz(ном.)-номинальное значение рабочего тока стабилитрона. По минимальному значению 0,2Iz (ном.) и максимальному значению 0,8Iz (ном.) тока стабилитрона можно определить требования к рассеиваемой стабилитроном мощности Pz. Необходимо, чтобы

ip-rs19.gif

Формулы 1-8 позволяют быстро выполнять расчет относительно экономичного источника питания, причем расчет может быть быстро и легко проверен при помощи обычного осциллографа. Выбор всех выпрямительных диодов и силового трансформатора осуществляется обычным способом. Данный способ может быть применен при расчете более сложных источников питания.